Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

$(\eta^{5}$ -Cyclopentadienyl) $(\eta^{6}$ -mesitylenyl)iron(II) hexafluorophosphate chloroform solvate

Alejandro Sánchez Perucha and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 31 May 2007; accepted 1 June 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.036; wR factor = 0.100; data-to-parameter ratio = 11.7.

The title compound, $[Fe(C_5H_5)(C_9H_{12})]PF_6$ ·CHCl₃, crystallizes with $Z' = \frac{1}{3}$. The cation, anion and solvent molecule are all located on special positions with site symmetry 3m. The cyclopentadienyl ring is disordered, due to the symmetry of the special position.

Experimental

Crystal data

 $[Fe(C_5H_5)(C_9H_{12})]PF_6 \cdot CHCl_3$ $M_r = 505.46$ Hexagonal, $P6_3mc$ a = 9.3640 (11) Å c = 13.3018 (19) Å V = 1010.1 (2) Å³

Data collection

Stoe IPDS II two-circle diffractometer Absorption correction: multi-scan (*MULABS*; Spek, 2003; Blessing, 1995) $T_{\rm min} = 0.664, T_{\rm max} = 0.776$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.100$ S = 1.13726 reflections 62 parameters 1 restraint Z = 2 Mo K α radiation μ = 1.27 mm⁻¹ T = 173 (2) K 0.35 × 0.33 × 0.21 mm

4236 measured reflections 726 independent reflections 711 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$

H-atom parameters constrained $\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 332 Friedel pairs Flack parameter: 0.02 (5)

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97*.

ASP thanks the Deutsche Forschungsgemeinschaft for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2319).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, m1897 [doi:10.1107/S1600536807026827]

$(\mathcal{N}^5$ -Cyclopentadienyl) $(\mathcal{N}^6$ -mesitylenyl)iron(II) hexafluorophosphate chloroform solvate

A. Sánchez Perucha and M. Bolte

Comment

The title compound, $[C_{14}H_{17}Fe]^+PF_6^-CHCl_3$, crystallizes with Z=1/3. All there molecules are located on a special position with site symmetry 3 m. The cyclopentadienyl ring is disordered due to the symmetry of the special position.

Experimental

Ferrocene (2 g, 10.75 mmol) was dissolved in mesitylene and Al (0.29 g, 10.75 mmol), AlCl₃ (5.73 g, 43 mmol) and H₂O (0.22 ml, 10.75 mmol) were added. The crude mixture was heated at 373 K for 8 h followed by aqueous workup. The aqueous phase was treated with an ammonia solution and filtered. NH_4PF_6 was added to precipitate the title compound in 85% as a yellow solid. Single crystals were obtained from slow evaporation of a chloroform solution.

Refinement

H atoms were refined using a riding model with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } U_{iso}(H) = 1.5U_{eq}(C_{methyl})]$ with C—H ranging from 0.95 Å to 1.00 Å. The cyclopentadienyl ring is disordered due to the symmetry of the special position. Since only nine sites were generated for the five atoms, the occupation factor of each site was set to 5/9 of is usual occupancy.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii. Symmetry operators for generating equivalent atoms: (i) x, -x, z; (ii) -2x, y, z; (iii) -y + 1, x-y + 1, z; (iv) y-x, -x + 1, z; (v) -x + y+1, -x + 1, z; (vi) -y + 1, x-y, z; (vii) y-x, y, z; (viii) -y, -x, z; (ix) y-x, -x, z.

η^5 -Cyclopentadienyl- η^6 -mesitylenyl-iron(III) hexafluoridophosphate chloroform solvate

Crystal data [Fe(C₅H₅)(C₉H₁₂)]PF₆·CHCl₃

Z = 2

$M_r = 505.46$	$F_{000} = 508$
Hexagonal, P6 ₃ mc	$D_{\rm x} = 1.662 \ {\rm Mg \ m^{-3}}$
Hall symbol: P 6c -2c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.3640 (11) Å	Cell parameters from 4866 reflections
b = 9.3640 (11) Å	$\theta = 4.1 - 25.7^{\circ}$
c = 13.3018 (19) Å	$\mu = 1.27 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 173 (2) K
$\beta = 90^{\circ}$	Block, yellow
$\gamma = 120^{\circ}$	$0.35 \times 0.33 \times 0.21 \text{ mm}$
$V = 1010.1 (2) \text{ Å}^3$	

Data collection

726 independent reflections
711 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\text{max}} = 25.6^{\circ}$
$\theta_{\min} = 4.0^{\circ}$
$h = -11 \rightarrow 11$
$k = -11 \rightarrow 11$
$l = -14 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0697P)^2 + 0.3969P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.100$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.13	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
726 reflections	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
62 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.021 (5)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 332 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.02 (5)

Special details

Experimental.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Fe1	0.0000	0.0000	0.02847 (8)	0.0288 (3)	
C1	-0.0886 (3)	0.0886 (3)	0.1437 (3)	0.0403 (12)	
C2	-0.1726 (6)	-0.0863 (3)	0.1437 (3)	0.0402 (12)	
H2	-0.2897	-0.1449	0.1437	0.048*	
C3	-0.1813 (3)	0.1813 (3)	0.1387 (5)	0.0569 (13)	
H3A	-0.2044	0.2044	0.2052	0.085*	
H3B	-0.1156	0.2831	0.1033	0.085*	
C4	0.0681 (9)	0.1362 (19)	-0.1027 (15)	0.080 (10)	0.56
H4	0.1267	0.2533	-0.1048	0.096*	0.56
C4'	0.1380 (14)	0.0137 (13)	-0.0959 (6)	0.049 (3)	0.56
H4'	0.2481	0.0339	-0.0948	0.059*	0.56
P1	0.6667	0.3333	0.47038 (15)	0.0319 (4)	
F1	0.5906 (3)	0.1813 (7)	0.5415 (6)	0.140 (3)	
F2	0.7417 (3)	0.2583 (3)	0.3980 (5)	0.138 (2)	
C5	0.3333	0.6667	0.2813 (8)	0.0444 (17)	
Н5	0.3333	0.6667	0.2061	0.053*	
Cl1	0.43613 (9)	0.56387 (9)	0.32191 (18)	0.0737 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0348 (4)	0.0348 (4)	0.0170 (5)	0.01738 (19)	0.000	0.000
C1	0.052 (2)	0.052 (2)	0.025 (2)	0.031 (2)	0.0023 (9)	-0.0023 (9)
C2	0.039 (3)	0.050 (2)	0.027 (2)	0.0196 (13)	0.0036 (18)	0.0018 (9)
C3	0.062 (3)	0.062 (3)	0.060 (3)	0.042 (3)	0.0068 (12)	-0.0068 (12)
C4	0.14 (2)	0.042 (7)	0.029 (7)	0.021 (3)	0.006 (3)	0.011 (5)
C4'	0.051 (5)	0.071 (7)	0.018 (3)	0.024 (5)	0.012 (3)	-0.009 (4)
P1	0.0294 (5)	0.0294 (5)	0.0369 (9)	0.0147 (3)	0.000	0.000
F1	0.187 (6)	0.067 (3)	0.126 (5)	0.0334 (15)	0.0249 (18)	0.050 (4)
F2	0.187 (5)	0.187 (5)	0.119 (5)	0.154 (6)	0.0232 (14)	-0.0232 (14)
C5	0.039 (2)	0.039 (2)	0.055 (4)	0.0194 (12)	0.000	0.000
Cl1	0.0620 (7)	0.0620 (7)	0.1108 (13)	0.0411 (7)	-0.0044 (4)	0.0044 (4)

Geometric parameters (Å, °)

Fe1—C4'	2.063 (9)	С3—НЗА	0.9600
Fe1—C4' ⁱ	2.063 (9)	С3—Н3В	0.9608

supplementary materials

Fe1—C4' ⁱⁱ	2.063 (9)	C4—C4 ^{,i}	1.583 (9)
Fe1—C4' ⁱⁱⁱ	2.063 (9)	C4—C4'	1.583 (9)
Fe1—C4 ^{iv}	2.063 (9)	C4—H4	0.9501
Fe1—C4' ^v	2.063 (9)	C4'—C4' ^{iv}	1.42 (2)
Fe1—C4 ⁱⁱⁱ	2.065 (19)	C4'—H4'	0.9500
Fe1—C4	2.065 (19)	P1—F2 ^{vi}	1.552 (5)
Fe1—C4 ^v	2.065 (19)	P1—F2	1.552 (5)
Fe1—C2 ⁱⁱⁱ	2.076 (5)	P1—F2 ^{vii}	1.552 (5)
Fe1—C2	2.076 (5)	P1—F1 ^{vii}	1.554 (5)
Fe1—C2 ^v	2.076 (5)	P1—F1 ^{vi}	1.554 (5)
C1—C2	1.419 (4)	P1—F1	1.554 (5)
C1—C2 ⁱⁱⁱ	1.419 (4)	C5—Cl1 ^{viii}	1.753 (4)
C1—C3	1.505 (7)	C5—Cl1 ^{ix}	1.753 (4)
$C2-C1^{v}$	1.419 (4)	C5—Cl1	1.753 (4)
C2—H2	0.9500	С5—Н5	1.0000
C4'—Fe1—C2 ⁱⁱⁱ	123.8 (3)	Fe1—C2—H2	132.4
C4 ⁱⁱ —Fe1—C2 ⁱⁱⁱ	123.8 (3)	C1—C3—H3A	110.5
C4' ⁱⁱ —Fe1—C2 ⁱⁱⁱ	105.2 (3)	С1—С3—Н3В	109.0
C4' ⁱⁱⁱ —Fe1—C2 ⁱⁱⁱ	163.3 (3)	НЗА—СЗ—НЗВ	109.4
C4 ^{iv} —Fe1—C2 ⁱⁱⁱ	163.3 (3)	C4 ⁱⁱⁱ —C4—C4 ⁱ	132 (2)
C4' ^v —Fe1—C2 ⁱⁱⁱ	105.2 (3)	C4' ^v —C4—C4'	132 (2)
C4 ⁱⁱⁱ —Fe1—C2 ⁱⁱⁱ	143.54 (12)	C4' ⁱ —C4—C4'	101.8 (13)
C4—Fe1—C2 ⁱⁱⁱ	105.3 (5)	C4' ^v —C4—C4 ⁱⁱⁱ	112.1 (18)
C4 ^v —Fe1—C2 ⁱⁱⁱ	143.54 (12)	C4 ^{,ii} —C4—C4 ^v	112.1 (18)
C4'—Fe1—C2	163.3 (3)	C4' ⁱⁱ —C4—H4	97.8
C4 ⁱⁱ —Fe1—C2	105.2 (3)	C4' ^v —C4—H4	97.8
C4' ⁱⁱ —Fe1—C2	163.3 (3)	C4 ^{,i} —C4—H4	129.0
C4' ⁱⁱⁱ —Fe1—C2	105.2 (3)	C4'—C4—H4	129.0
C4 ^{·iv} —Fe1—C2	123.8 (3)	Fe1—C4—H4	124.0
C4' ^v —Fe1—C2	123.8 (3)	C4 ⁱⁱⁱ —C4'—C4' ⁱⁱ	127.3 (18)
C4 ⁱⁱⁱ —Fe1—C2	143.54 (12)	C4' ⁱⁱ —C4'—C4' ^{iv}	119.998 (3)
C4—Fe1—C2	143.54 (12)	C4 ⁱⁱⁱ —C4'—C4	106 (2)
C4 ^v —Fe1—C2	105.3 (5)	C4 ⁱⁱⁱ —C4'—H4'	122.1
C2 ⁱⁱⁱ —Fe1—C2	71.5 (2)	C4' ⁱⁱ —C4'—H4'	110.1
C4'—Fe1—C2 ^v	105.2 (3)	Fe1—C4'—H4'	125.7
C4 ⁱ —Fe1—C2 ^v	163.3 (3)	F2 ^{vi} —P1—F2	85.5 (4)
C4' ⁱⁱ —Fe1—C2 ^v	123.8 (3)	F2 ^{vi} —P1—F2 ^{vii}	85.5 (4)
C4 ⁱⁱⁱ —Fe1—C2 ^v	123.8 (3)	F2—P1—F2 ^{vii}	85.5 (4)
$C4'^{iv}$ —Fe1— $C2^{v}$	105.2 (3)	F2 ^{vi} —P1—F1 ^{vii}	179.2 (4)
$C4'^{v}$ —Fe1— $C2^{v}$	163.3 (3)	F2—P1—F1 ^{vii}	93.8 (3)
C4 ⁱⁱⁱ —Fe1—C2 ^v	105.3 (5)	F2 ^{vii} —P1—F1 ^{vii}	93.8 (3)

C4—Fe1—C2 ^{v}	143.54 (12)	$F2^{vi}$ — $P1$ — $F1^{vi}$	93.8 (3)
$C4^{v}$ —Fe1— $C2^{v}$	143.54 (12)	F2—P1—F1 ^{vi}	179.2 (4)
C2 ⁱⁱⁱ —Fe1—C2 ^v	71.5 (2)	F2 ^{vii} —P1—F1 ^{vi}	93.8 (3)
$C2$ —Fe1— $C2^{v}$	71.5 (2)	F1 ^{vii} —P1—F1 ^{vi}	86.8 (4)
C2—C1—C2 ⁱⁱⁱ	117.4 (4)	F2 ^{vi} —P1—F1	93.8 (3)
C2-C1-C3	121.3 (2)	F2—P1—F1	93.8 (3)
$C2^{iii}$ — $C1$ — $C3$	121.3 (2)	F2 ^{vii} —P1—F1	179.2 (5)
C2-C1-Fe1	69.2 (2)	F1 ^{vii} —P1—F1	86.8 (4)
C2 ⁱⁱⁱ —C1—Fe1	69.2 (2)	F1 ^{vi} —P1—F1	86.8 (4)
C3—C1—Fe1	130.7 (4)	Cl1 ^{viii} —C5—Cl1 ^{ix}	110.9 (3)
C1 ^v —C2—C1	122.6 (4)	Cl1 ^{viii} —C5—Cl1	110.9 (3)
C1 ^v —C2—Fe1	71.1 (2)	Cl1 ^{ix} —C5—Cl1	110.9 (3)
C1-C2-Fe1	71.1 (2)	Cl1 ^{viii} —C5—H5	108.0
C1 ^v —C2—H2	118.7	Cl1 ^{ix} —C5—H5	108.0
C1—C2—H2	118.7	Cl1—C5—H5	108.0
C4'—Fe1—C1—C2	174.8 (8)	C4' ⁱ —Fe1—C4—C4'	-114.4 (12)
C4' ⁱ —Fe1—C1—C2	99.0 (3)	C4 ⁱⁱⁱ —Fe1—C4—C4'	30.1 (14)
C4' ⁱⁱ —Fe1—C1—C2	163.4 (4)	C4 ^{,iii} —Fe1—C4—C4'	-73.0 (7)
C4' ⁱⁱⁱ —Fe1—C1—C2	64.5 (4)	C4 ^{,iv} —Fe1—C4—C4'	-41.4 (6)
C4 ^{iv} —Fe1—C1—C2	53.0 (8)	C4 ^v —Fe1—C4—C4'	-145 (2)
C4' ^v —Fe1—C1—C2	128.8 (4)	C4 ⁱⁱⁱ —Fe1—C4—C4'	-22.9 (7)
C4 ⁱⁱⁱ —Fe1—C1—C2	113.9 (2)	C4 ^v —Fe1—C4—C4'	-91.6 (5)
C4—Fe1—C1—C2	144.9 (4)	C2 ⁱⁱⁱ —Fe1—C4—C4'	122.8 (6)
C4 ^v —Fe1—C1—C2	83.0 (4)	C2—Fe1—C4—C4'	-157.9 (5)
C2 ⁱⁱⁱ —Fe1—C1—C2	-132.1 (4)	C2 ^v —Fe1—C4—C4'	43.5 (11)
C2 ^v —Fe1—C1—C2	-66.1 (2)	C4'—Fe1—C4—C4 ⁱⁱⁱ	22.9 (7)
C4'—Fe1—C1—C2 ⁱⁱⁱ	-53.0 (8)	C4 ⁱⁱ —Fe1—C4—C4 ⁱⁱⁱ	-91.6 (5)
C4 ⁱⁱ —Fe1—C1—C2 ⁱⁱⁱ	-128.8 (4)	C4 ⁱⁱⁱ —Fe1—C4—C4 ⁱⁱⁱ	53 (2)
C4' ⁱⁱ —Fe1—C1—C2 ⁱⁱⁱ	-64.5 (4)	C4 ^{,iii} —Fe1—C4—C4 ⁱⁱⁱ	-50.2 (3)
C4' ⁱⁱⁱ —Fe1—C1—C2 ⁱⁱⁱ	-163.4 (4)	C4 ^{,iv} —Fe1—C4—C4 ⁱⁱⁱ	-18.5 (4)
C4 ^{'iv} —Fe1—C1—C2 ⁱⁱⁱ	-174.8 (8)	C4 ^v —Fe1—C4—C4 ⁱⁱⁱ	-121.7 (17)
C4' ^v —Fe1—C1—C2 ⁱⁱⁱ	-99.0 (3)	C4 ^v —Fe1—C4—C4 ⁱⁱⁱ	-68.7 (3)
C4 ⁱⁱⁱ —Fe1—C1—C2 ⁱⁱⁱ	-113.9 (2)	C2 ⁱⁱⁱ —Fe1—C4—C4 ⁱⁱⁱ	145.65 (14)
C4—Fe1—C1—C2 ⁱⁱⁱ	-83.0 (4)	C2—Fe1—C4—C4 ⁱⁱⁱ	-135.0 (8)
C4 ^v —Fe1—C1—C2 ⁱⁱⁱ	-144.9 (4)	C2 ^v —Fe1—C4—C4 ⁱⁱⁱ	66.3 (5)
C2—Fe1—C1—C2 ⁱⁱⁱ	132.1 (4)	C4'—Fe1—C4—C4 ^v	91.6 (5)
C2 ^v —Fe1—C1—C2 ⁱⁱⁱ	66.1 (2)	C4 ^{,i} —Fe1—C4—C4 ^v	-22.9 (7)
C4'—Fe1—C1—C3	60.9 (8)	C4' ⁱⁱ —Fe1—C4—C4 ^v	121.7 (17)
C4 ⁱⁱ —Fe1—C1—C3	-14.9 (3)	C4' ⁱⁱⁱ —Fe1—C4—C4 ^v	18.5 (4)
C4' ⁱⁱ —Fe1—C1—C3	49.5 (4)	C4 ^{iv} —Fe1—C4—C4 ^v	50.2 (3)
C4' ⁱⁱⁱ —Fe1—C1—C3	-49.5 (4)	C4' ^v —Fe1—C4—C4 ^v	-53 (2)

supplementary materials

C4 ^{iv} —Fe1—C1—C3	-60.9 (8)	C4 ⁱⁱⁱ —Fe1—C4—C4 ^v	68.7 (3)
C4 ¹ V—Fe1—C1—C3	14.9 (3)	C2 ⁱⁱⁱ —Fe1—C4—C4 ^v	-145.65 (14)
C4 ⁱⁱⁱ —Fe1—C1—C3	-0.002 (2)	C2—Fe1—C4—C4 ^v	-66.3 (5)
C4—Fe1—C1—C3	30.9 (3)	C2 ^v —Fe1—C4—C4 ^v	135.0 (8)
C4 ^v —Fe1—C1—C3	-30.9 (3)	C4' ⁱⁱ —C4—C4'—C4 ⁱⁱⁱ	180.003 (2)
C2 ⁱⁱⁱ —Fe1—C1—C3	113.9 (2)	C4' ^v —C4—C4'—C4 ⁱⁱⁱ	21 (6)
C2—Fe1—C1—C3	-113.9 (2)	C4' ⁱ —C4—C4'—C4 ⁱⁱⁱ	13 (4)
C2 ^v —Fe1—C1—C3	180.0	C4 ^v —C4—C4'—C4 ⁱⁱⁱ	8(2)
$C2^{iii}$ — $C1$ — $C2$ — $C1^{v}$	-0.1 (7)	Fe1—C4—C4'—C4 ⁱⁱⁱ	72 (3)
C3—C1—C2—C1 ^v	177.0 (4)	C4' ^v —C4—C4'—C4' ⁱⁱ	-159 (6)
Fe1—C1—C2—C1 ^v	51.3 (4)	C4' ⁱ —C4—C4'—C4' ⁱⁱ	-167 (4)
C2 ⁱⁱⁱ —C1—C2—Fe1	-51.3 (4)	C4 ⁱⁱⁱ —C4—C4'—C4' ⁱⁱ	179.997 (2)
C3—C1—C2—Fe1	125.8 (4)	C4 ^v —C4—C4'—C4' ⁱⁱ	-172 (2)
C4'—Fe1—C2—C1 ^v	51.1 (11)	Fe1—C4—C4'—C4' ⁱⁱ	-108 (3)
$C4^{i}$ —Fe1—C2—C1 ^v	132.9 (3)	C4' ⁱⁱ —C4—C4'—C4' ^{iv}	172 (2)
$C4'^{ii}$ —Fe1—C2—C1 ^v	172.9 (11)	C4' ^v —C4—C4'—C4' ^{iv}	13 (4)
$C4^{iii}$ —Fe1—C2—C1 ^v	91.1 (4)	C4' ⁱ —C4—C4'—C4' ^{iv}	4.6 (13)
$C4^{iv}$ —Fe1—C2—C1 ^v	66.2 (4)	C4 ⁱⁱⁱ —C4—C4'—C4' ^{iv}	-8(2)
$C4^{v}$ —Fe1—C2—C1 ^v	157.7 (4)	C4 ^v —C4—C4'—C4' ^{iv}	0.0
$C4^{iii}$ —Fe1—C2—C1 ^v	60.8 (8)	Fe1—C4—C4'—C4' ^{iv}	63.7 (3)
C4—Fe1—C2—C1 v	163.2 (8)	C4' ⁱⁱ —C4—C4'—Fe1	108 (3)
$C4^{v}$ —Fe1—C2—C1 ^v	112.0 (2)	C4' ^v —C4—C4'—Fe1	-50 (4)
$C2^{iii}$ —Fe1—C2—C1 ^v	-106.02 (18)	C4 ^{,i} —C4—C4'—Fe1	-59.2 (10)
$C2^{v}$ —Fe1—C2—C1 ^v	-30.0 (2)	C4 ⁱⁱⁱ —C4—C4'—Fe1	-72 (3)
C4'—Fe1—C2—C1	-172.9 (11)	C4 ^v —C4—C4'—Fe1	-63.7 (3)
C4 ⁱⁱ —Fe1—C2—C1	-91.1 (4)	C4 ⁱⁱ —Fe1—C4'—C4 ⁱⁱⁱ	-70 (2)
C4 ^{,ii} —Fe1—C2—C1	-51.1 (11)	C4 ^{,ii} —Fe1—C4'—C4 ⁱⁱⁱ	-133.0 (19)
C4 ^{,iii} —Fe1—C2—C1	-132.9 (3)	C4 ^{,iii} —Fe1—C4'—C4 ⁱⁱⁱ	-27.6 (18)
C4 ^{,iv} —Fe1—C2—C1	-157.7 (4)	C4' ^{iv} —Fe1—C4'—C4 ⁱⁱⁱ	-3(2)
C4 ^{vv} —Fe1—C2—C1	-66.2 (4)	C4' ^v —Fe1—C4'—C4 ⁱⁱⁱ	-99.1 (17)
C4 ⁱⁱⁱ —Fe1—C2—C1	-163.2 (8)	C4—Fe1—C4'—C4 ⁱⁱⁱ	-112 (2)
C4—Fe1—C2—C1	-60.8 (8)	C4 ^v —Fe1—C4'—C4 ⁱⁱⁱ	-49.2 (17)
C4 ^v —Fe1—C2—C1	-112.0 (2)	C2 ⁱⁱⁱ —Fe1—C4'—C4 ⁱⁱⁱ	170.5 (17)
C2 ⁱⁱⁱ —Fe1—C2—C1	30.0 (2)	C2—Fe1—C4'—C4 ⁱⁱⁱ	17 (3)
C2 ^v —Fe1—C2—C1	106.02 (18)	$C2^{v}$ —Fe1—C4'—C4 ⁱⁱⁱ	92.9 (19)
C4'—Fe1—C4—C4' ⁱⁱ	-30.1 (14)	C4' ⁱ —Fe1—C4'—C4' ⁱⁱ	63.21 (18)
C4 ⁱⁱ —Fe1—C4—C4' ⁱⁱ	-145 (2)	C4 ^{,iii} —Fe1—C4'—C4' ⁱⁱ	105.4 (4)
C4' ⁱⁱⁱ —Fe1—C4—C4' ⁱⁱ	-103 (2)	C4' ^{iv} —Fe1—C4'—C4' ⁱⁱ	130.19 (16)
C4' ^{iv} —Fe1—C4—C4' ⁱⁱ	-71.6 (16)	C4' ^v —Fe1—C4'—C4' ⁱⁱ	33.9 (4)
C4' ^v —Fe1—C4—C4 ⁱⁱ	-175 (4)	C4 ⁱⁱⁱ —Fe1—C4'—C4' ⁱⁱ	133.0 (19)
C4 ⁱⁱⁱ —Fe1—C4—C4' ⁱⁱ	-53 (2)	C4—Fe1—C4'—C4' ⁱⁱ	20.8 (7)

C4 ^v —Fe1—C4—C4' ⁱⁱ	-121.7 (17)	$C4^{v}$ —Fe1—C4'—C4' ⁱⁱ	83.7 (2)
C2 ⁱⁱⁱ —Fe1—C4—C4' ⁱⁱ	92.6 (19)	C2 ⁱⁱⁱ —Fe1—C4'—C4' ⁱⁱ	-56.5 (2)
C2—Fe1—C4—C4' ⁱⁱ	171.9 (13)	C2—Fe1—C4'—C4 ^{'ii}	149.8 (11)
C2 ^v —Fe1—C4—C4 ⁱⁱ	13 (2)	C2 ^v —Fe1—C4'—C4' ⁱⁱ	-134.09 (14)
C4'—Fe1—C4—C4' ^v	145 (2)	C4 ⁱⁱ —Fe1—C4'—C4 ^{iv}	-66.98 (19)
C4' ⁱ —Fe1—C4—C4' ^v	30.1 (14)	C4 ^{,ii} —Fe1—C4'—C4' ^{iv}	-130.19 (16)
C4' ⁱⁱ —Fe1—C4—C4' ^v	175 (4)	C4 ^{,iii} —Fe1—C4'—C4 ^{,iv}	-24.8 (4)
C4' ⁱⁱⁱ —Fe1—C4—C4' ^v	71.6 (16)	C4 ^v —Fe1—C4'—C4' ^{iv}	-96.3 (5)
C4' ^{iv} —Fe1—C4—C4' ^v	103 (2)	C4 ⁱⁱⁱ —Fe1—C4'—C4' ^{iv}	3(2)
C4 ⁱⁱⁱ —Fe1—C4—C4' ^v	121.7 (17)	C4—Fe1—C4'—C4 ^{iv}	-109.3 (6)
C4 ^v —Fe1—C4—C4' ^v	53 (2)	C4 ^v —Fe1—C4'—C4' ^{iv}	-46.4 (3)
C2 ⁱⁱⁱ —Fe1—C4—C4' ^v	-92.6 (19)	C2 ⁱⁱⁱ —Fe1—C4'—C4' ^{iv}	173.3 (3)
C2—Fe1—C4—C4' ^v	-13 (2)	C2—Fe1—C4'—C4 ^{iv}	19.7 (10)
$C2^{v}$ —Fe1—C4—C4' ^v	-171.9 (13)	$C2^{v}$ —Fe1—C4'—C4' ^{iv}	95.72 (14)
C4'—Fe1—C4—C4' ⁱ	114.4 (12)	C4' ⁱ —Fe1—C4'—C4	42.4 (7)
C4' ⁱⁱ —Fe1—C4—C4' ⁱ	145 (2)	C4' ⁱⁱⁱ —Fe1—C4'—C4	-20.8 (7)
C4' ⁱⁱⁱ —Fe1—C4—C4' ⁱ	41.4 (6)	C4 ^{,iii} —Fe1—C4'—C4	84.6 (7)
C4' ^{iv} —Fe1—C4—C4' ⁱ	73.0 (7)	C4 ^{,iv} —Fe1—C4'—C4	109.3 (6)
C4' ^v —Fe1—C4—C4' ⁱ	-30.1 (14)	C4 ^{,v} —Fe1—C4'—C4	13.0 (8)
C4 ⁱⁱⁱ —Fe1—C4—C4' ⁱ	91.6 (5)	C4 ⁱⁱⁱ —Fe1—C4'—C4	112 (2)
C4 ^v —Fe1—C4—C4 ⁱ	22.9 (7)	C4 ^v —Fe1—C4'—C4	62.9 (8)
C2 ⁱⁱⁱ —Fe1—C4—C4' ⁱ	-122.8 (6)	C2 ⁱⁱⁱ —Fe1—C4'—C4	-77.3 (8)
C2—Fe1—C4—C4 ⁱ	-43.5 (11)	C2—Fe1—C4'—C4	129.0 (8)
$C2^{v}$ —Fe1—C4—C4' ⁱ	157.9 (5)	C2 ^v —Fe1—C4'—C4	-154.9 (6)

Symmetry codes: (i) -*x*+*y*, *y*, *z*; (ii) *x*, *x*-*y*, *z*; (iii) -*x*+*y*, -*x*, *z*; (iv) -*y*, -*x*, *z*; (v) -*y*, *x*-*y*, *z*; (vi) -*x*+*y*+1, -*x*+1, *z*; (vii) -*y*+1, *x*-*y*, *z*; (viii) -*x*+*y*, -*x*+1, *z*; (ix) -*y*+1, *x*-*y*, *z*;

F2^{vi}

F1 *

P1

-2

F1™